
Be My Guest: Welcoming Interoperability into
IBC-Incompatible Blockchains

Michał Nazarewicz∗, Dhruv D. Jain†, Miguel Matos‡, Blas Rodriguez†
∗No Affiliation, †Inclusive Layer, ‡IST Lisbon & INESC-ID

Abstract—The rise of cryptocurrencies has led to the creation
of numerous isolated blockchains. A limitation of the space is
the absence of seamless interoperability, which has hindered
users’ ability to interact across different chains. To tackle this
challenge, the Inter-Blockchain Communication (IBC) protocol
has emerged as one possible trustless solution. Unfortunately,
some blockchains (for example Solana, NEAR, and TRON) do not
meet IBC’s technical criteria, preventing their integration with
the wider IBC ecosystem. This paper introduces the concept of a
guest blockchain which runs on top of an unsupported blockchain
and provides all the features necessary for IBC integration. We
demonstrate our approach by deploying it on top of Solana which
is currently live in the main network and enables IBC-based
communication with the Solana blockchain with performance
comparable to native IBC-blockchains.

I. INTRODUCTION AND RELATED WORK

Since Bitcoin’s inception [1], blockchains have attracted the
attention of the industry, academia and the general public,
resulting in a wide-range of systems that cater to different
use cases, business models, and security requirements [2]–
[9]. While these specialized designs have contributed to the
popularity of blockchain ecosystems, they’ve also led to
fragmentation since most blockchains were not built with
interoperability in mind.

As blockchain systems grow in value and users, the ability
to perform cross-chain communication (i.e. blockchain in-
teroperability) allows for the development of new use cases
offering value to users including cross-chain governance, yield
aggregation, decentralised lending. The demand for blockchain
interoperability can be seen in the plethora of proposals aiming
at connecting blockchain ecosystems [10]–[12].

Early approaches for cross-chain communication relied on
a trusted third-party to pass packets between blockchains. A
Trusted Relayer listens to changes made on one blockchain and
sends matching transactions to another. The safety and liveness
of this approach completely dependens on this centralised
entity which runs counter to the common motivation for using
blockchains as decentralised trustless systems.

Trustless bridges aim to remove the need for trusted third
parties. The Inter-Blockchain Communication (IBC) proto-
col [13] is an example of a technology enabling trustless
bridging with 100+ interconnected blockchains and cross-
chain transfers worth over 1.5 billion dollars each month1.
It operates similarly to trusted bridges except that its relayers
include cryptographic proofs for each executed transaction.

1https://mapofzones.com/zones?period=30d, retrieved 2024-11-01

Those proofs are independently verified on each blockchain,
making it impossible to falsify packets.

To operate correctly, IBC imposes technical requirements
on the target blockchains. Not all blockchains meet them,
including widely used systems such as NEAR [3]2, Solana [4],
and TRON [5]. Modifying those systems to support IBC is not
trivial and can require substantial technical effort.

We introduce the concept of a guest blockchain for connect-
ing to the IBC ecosystem blockchains that do not meet IBC’s
requirements. Unlike approaches that rely on trusted third-
parties [15]–[17] or leverage blockchain-specific characteris-
tics [6], [7], our approach is trustless and can be applied to all
blockchains supporting smart contracts and on-chain storage.

Our key insight is to leverage existing functionalities,
namely: the ability to run smart contracts to emulate a guest
blockchain that provides the necessary functionalities to sat-
isfy IBC requirements; and the communication mechanism
defined by the IBC protocol to allow interoperability between
blockchains. Because the guest blockchain runs on top of
an existing blockchain (i.e. the host), it inherits its security,
liveness, and trust properties. Overall, our results show that
the guest blockchain has performance and costs comparable
to other IBC approaches.

II. IBC BACKGROUND

IBC is a stateful, connection-oriented protocol for reli-
able and authenticated communication between independent
blockchains [13], [18]. It offers bi-directional channels with
a relatively short delay—averaging one minute per packet
between blockchains [19]. IBC defines the following elements:

Provable storage a key-value store that can cryptographi-
cally prove the presence or absence of data to external
verifiers, typically implemented as a Merkle trie.

Counterparty’s light client an on-chain component that
validates block headers of the counterparty blockchain.

IBC module handles the protocol logic and maintains the
state necessary for packet exchange.

Runtime environment supports transactional execution and
mechanisms for sending/receiving IBC packets.
Communication between blockchains requires establishing

a connection through a handshake that verifies the identit and
status of each blockchain. This requires each blockchain to

2While Octopus Network has launched IBC on NEAR [14], their implemen-
tation is incomplete and leaves validate_self_client method blank
(see https://github.com/octopus-network/near-ibc/blob/2b30af42/near-ibc/src/
ibc impl/core/validation context.rs#L145).

© 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

https://mina86.com/
https://miguelmatos.me/
https://mapofzones.com/zones?period=30d
https://github.com/octopus-network/near-ibc/blob/2b30af42/near-ibc/src/ibc_impl/core/validation_context.rs#L145
https://github.com/octopus-network/near-ibc/blob/2b30af42/near-ibc/src/ibc_impl/core/validation_context.rs#L145


M. Nazarewicz, D. Jain, M. Matos, B. Rodriguez

Guest block M-1
Previous block
Blockchain state

⋮

Guest
Contract

IBC module

Guest blockchain manager

Provable
storage

Counterparty light client

IBC module

Counterparty
blockchain

Host blockchain

Relayer

Fisherman

Validatorird-party
contract

Host block N
Blockchain state
Previous block

⋮

Host block N-1
Blockchain state
Previous block

⋮

Guest block M
Previous block
Blockchain state

⋮

Host block N+1
Blockchain state
Previous block

⋮

Fig. 1: The high-level architecture of a guest blockchain.

be able to introspect its own state, particularly recent block
headers. Once connected, packet exchange takes the following
steps: 1 a smart contract generates a packet and stores its
commitment in the source blockchain, 2 a relayer notices
the packet and forwards it with a proof to the destination
blockchain, 3 the destination’s IBC module verifies the proof
and validity of the packet, 4 the destination verifies the proof
and processes the packet, 5 a relayer forwards a receipt back
to the source blockchain, 6 the source marks the packet as
delivered and notifies the source smart contract.

Unfortunately not all blockchains meet IBC requirements.
Solana and TRON lack state proofs [20], [21], while NEAR
does not implement introspection [22]. While it is, in principle,
possible to extend each system with the missing features,
it is often complex and time consuming, and users of such
blockchains may not have an option to wait for the neces-
sary changes. Our guest blockchain approach addresses these
limitations without modifying the host’s blockchain.

III. THE GUEST BLOCKCHAIN

The guest blockchain creates a virtual blockchain layer on
top of the host blockchain to enable IBC compatibility. The
host blockchain provides transaction atomicity and state per-
sistence, while the guest layer adds the missing IBC features—
provable storage, light client support, and block introspection.

Fig. 1 depicts the system architecture. The main logic is
implemented in the Guest Contract (§III-A), a smart contract
running on the host. It has two main roles: 1) generate blocks
in the guest blockchain (the guest blocks) and 2) serve as a
bridge between the host and guest blockchains. The Validators
(§III-B) watch for new blocks produced by the Guest Contract,
Relayers forward packets between the blockchains and Fish-
ermen monitor Validator misbehaviour (§III-C).

A. Guest Contract

The Guest Contract maintains the guest blockchain state,
including the list of guest blocks and the set of sent, delivered,
and received IBC packets.

Provable Storage The guest blockchain uses a Merkle trie
to keep its provable state. Guest blocks include the root hash of
the trie which acts as a commitment for state membership and
non-membership proofs [23]–[25]. To prevent double delivery,
the Guest Contract has to remember all processed packets, i.e.
as an IBC connection is used, more data is generated.

To address the unbounded space growth, we drew in-
spiration from Bitcoin’s disk reclamation technique [1] and
implemented a sealable trie. A sealable trie alters the Merkle
trie by allowing nodes to be sealed — removing them from
storage while preserving the trie’s commitment. A sealed leaf
node is removed from the underlying storage without changing
its hash saved in the parent node. If all children of an internal
node are sealed, that node is sealed as well.

Sealed nodes cannot be accessed so only values which are
no longer needed may be sealed. For example, when a packet
is delivered, the Guest Contract saves it in the trie and then
seals its node. The next time the same packet is delivered, the
Guest Contract is unable to access the sealed node which, as
required, prevents double delivery.

With this design, the size Guest Contract’s provable storage
depends on the number of open channels and packets in flight
only and does not grow over time.

Algorithm The Guest Contract’s algorithm is depicted in
Alg. 1. Note that IBC multiplexes streams of packets between
two blockchains. Each stream, called a channel, is identified by
a 〈name, port〉 pair [26]. For brevity we omit those details from
the algorithm (e.g. out_seq_num is tracked per channel).

The sender submits a packet (step 1 ) via the SendPacket
procedure. The Guest Contract collects fees, generates a
packet with the next available sequence number, and stores
its commitment in the guest blockchain’s provable storage.

Before further processing, the packet is included in a new
guest block first. The GenerateBlock procedure which can
be invoked by anyone (e.g. whenever a host block is produced)
handles that; it checks if: 1) the current head of the guest
blockchain is finalised (i.e. a quorum of Validators have signed
it) and 2) the state root has changed or the head is older than
a predefined ∆. If both conditions are met, a new block is
created and the Guest Contract emits a NewBlock event.

The ∆ parameter is necessary to support IBC timeouts. The
counterparty needs to observe a guest block to verify time seen
by the guest blockchain. ∆ guarantees a guest block with a
new timestamp is always eventually generated.

Validators listen to the NewBlock event (§III-B) and
submits the block signature via the Sign procedure. The
Guest Contract checks the signature and adds the Validator to
block’s signers set if its an active validator who has not signed
the block yet. Once quorum is reached, the block is finalised
and a FinalisedBlock event emitted. This event, which
correspond to step 2 , is picked up by a Relayer (§III-C).



Be My Guest: Welcoming Interoperability into IBC-Incompatible Blockchains

1 init
2 blocks ← 〈genesis block〉 // Guest blocks
3 out seq num ← 0 // Number of packets sent
4 trie ← ∅ // Guest blockchain state
5 ∆← ... // Max age, system parameter
6 procedure SendPacket(destination, payload)
7 collect fees(payload)
8 n← out seq num
9 packet← gen packet(n, destination, payload)

10 out seq num ← n+ 1
11 trie ← trie ∪ {hash(packet)}
12 procedure GenerateBlock()
13 head← last(blocks)
14 assert head.finalised
15 assert head.trie ̸= trie ∨ age(head) ≥ ∆
16 block ← create new block(head, trie)
17 blocks ← blocks ∪ {block}
18 emit event NewBlock(block)
19 procedure Sign(height, pubkey, signature)
20 block ← blocksheight
21 assert block ̸= ⊥ // Invalid height
22 assert pubkey ∈ block.epoch.validators
23 assert pubkey /∈ block.signers
24 assert check signature(block, pubkey, signature)
25 block.signers ← block.signers ∪ {pubkey}
26 if ¬block.finalised then
27 votes←

∑
v∈block.signers block.epoch.stake(v)

28 if votes ≥ block.epoch.quorum then
29 block.finalised ← True
30 emit event FinalisedBlock(block)
31 blocksheight ← block
32 procedure ReceivePacket(packet, height, proof)
33 block ← get counterparty block(height)
34 assert block ̸= ⊥ // Unknown counterparty block
35 ph← hash(packet)
36 assert check proof(ph ∈ block.state, proof)
37 assert ph /∈ trie
38 trie ← trie ∪ {ph}
39 deliver packet.payload to packet.destination

Alg. 1: Guest Contract

For incoming packets, the Relayer picks packets from
the counterparty blockchain and calls the ReceivePacket
procedure. It verifies the membership proof for the packet (step
4 ) and if the packet has not been received yet, it is added to

the guest blockchain’s provable storage and delivered to the
target smart contract on the host chain (step 5 ).

B. Validators

Validators enable light clients and state proofs through a
Proof-of-Stake mechanism for block finalisation [27]. They
attest guest blocks were generated by the Guest Contract which
allows counterparty blockchains to verify guest blocks and
state proofs.

1 upon NewBlock(block)
2 signature ← sign(block, validator.pvtkey)
3 guest.Sign(block.height, validator.pubkey,

signature)
4 upon FinalisedBlock(block)
5 if block.packets ̸= ∅ ∨ block.last in epoch then
6 counterparty.send block(block)
7 foreach packet ∈ block.packets do
8 if packet /∈ relayer.outgoing packets then
9 proof ← gen proof(

hash(packet) ∈ block.state)
10 counterparty.deliver packet(

packet, block.height, proof )

Alg. 2: Validators and Relayers

Validators are established for an epoch (a configurable
number of blocks) and must stake assets with the Guest
Contracts to become candidates. At the end of an epoch the
contract selects the Validators with the most stake. Validators
that misbehaves are slashed and removed from the set.

C. Relayer and Fishermen

Relayers poll events from and forward packets between
blockchains. Since the guest blockchain provides a standard
IBC interface, we reuse existing Relayer implementations.
Through the state proofs, both blockchains can verify each
other’s state ensuring safety even if Relayers misbehave.

Fishermen monitor the guest blockchain for signs of misbe-
haviour. If they notice it they send proof to the Guest Contract
which can be 1) a pair of signatures for different blocks with
the same height, 2) a signature for a block with height larger
than the blockchain’s head, or 3) a signature for a block which
differs from a known block at that height.

Relayers and Fishermen are both permissionless and can be
run by anyone.

IV. IMPLEMENTATION AND DEPLOYMENT

We implemented and deployed the guest blockchain on
Solana [4] and connected it with Picasso Network,3 a Cosmos-
based blockchain with native IBC support. We selected Solana
because it is popular, offers good performance and low
fees [28] but lacks IBC support.

Solana’s performance comes at the cost of several constrain
of the smart contract execution runtime such as: transaction
size limit of 1232 bytes, compute time limit of 1.4 million
compute units preventing implementing cryptographic func-
tions in-contract, default memory allocator not supporting heap
sizes over 32 KiB and lack of support for mutable global
state [29], [30]. We implemented solutions for each of those
restrictions [31]–[33] which further illustrates general applica-
bility and the powerful abstraction our approach provides.

3https://picasso.network/

https://picasso.network/


M. Nazarewicz, D. Jain, M. Matos, B. Rodriguez

SendPacket Latency

10 100 1000 10000
Delay (s)

0.00

0.25

0.50

0.75

1.00
C

D
F

Fig. 2: Delay between sending a packet (SendPacket invo-
cation) and time it is stored in a finalised guest block ready to
be picked up by a Relayer (the FinalisedBlock event).

SendPacket Cost

150 200 250 300
Cost (USD cents)

0.00

0.25

0.50

0.75

1.00

C
D

F

Fig. 3: Cost of sending a packet (SendPacket invocation).

The guest blockchain is operational on Solana’s main net-
work with the following configuration: ∆ = 1h, i.e. the
minimum time between empty blocks; the minimum epoch
length set to 100 thousand host blocks (roughly 12 hours);
and Validator stake held for one week after exit.

V. EVALUATION

We evaluated the guest blockchain deployed in Solana and
connected to the Picasso network between September 1-29
2024. The guest blockchain had 24 Validators, with only one
controlled by us for bootstrapping. The remaining Validators
were operated by third parties who staked assets to participate
in the system. The total stake value was 1.25 million dollars.

We focus the evaluation on the cost and latency from
different perspectives. They are naturally influenced by the
host blockchain and this angle, Solana is an ideal evaluation
scenario since its sub-second block speed and low fees min-
imise the host’s influence on the obtained results. Furthermore,
we do not evaluate the cost or latency involved in calling the
counterparty blockchain and restrict ourselves to assess the
contributions of the guest blockchain to each aspect.

Fees on Solana are paid in SOL, Solana’s native currency.
To make values more intuitive, we present costs in US dollars
assuming a SOL price of 200 USD which corresponds roughly
to the highest value over the last 12 months4. All evaluation
data are available at [34].

A. Client Perspective

We start by evaluating the guest blockchain from the per-
spective of a client of the system, i.e. a client smart contract

4https://coinmarketcap.com/currencies/solana/ retrieved 2024-11-01

Light Client Update Latency

10 100 1000
Light client update execution time (s)

0.00

0.25

0.50

0.75

1.00

C
D

F

Fig. 4: Latency of the light client updates sent by the Relayer
to, i.e. time between execution of the first and last Solana
transaction comprising the light client update.

sending/receiving packets to/from the counterparty blockchain.
Sending a packet The time to send a packet captures

the elapsed time between a user initiating an outgoing
packet and the packet being included in a finalised block.
This corresponds to the period from the invocation of the
SendPacket procedure in the Guest Contract to the mo-
ment the FinalisedBlock event is emitted. Note that
the total time observed by the client also includes the time
the transaction spends in the host blockchain mempool, the
time Relayer takes to deliver the packet to the counterparty
blockchain. Those are outside our control and applies equally
to all transactions submitted to the host.

The results are depicted in Fig. 2 and show that all but three
transfers were completed within 21 seconds. The three strag-
glers were caused by delays from the Validators when signing
the blocks. These operational issues are prone to happen in
early stage deployments such as the guest blockchain but we
expect them to be smoothened out as the system matures.

Fig. 3 shows the cost of sending a packet with a clear
division into two clusters. The grouping corresponded to
different fee policies: in 17% of the cases Solana priority
fees [29] were used with cost of 1.40 USD; in the remaining
cases block bundles were used with cost of about 3.02 USD.5

In time we expect to settle on a single strategy which balances
cost and latency (§VI-B).

Receiving a packet Receiving a packet is a multi-step
process as described in §II, steps 3 – 5 (with the guest
blockchain in role of the destination blockchain). Firstly, a
Relayer updates the light client with the state of the coun-
terparty blockchain (line 6 of Alg. 2). Due to the Solana
limitations described in §IV, those operations are split into
multiple Solana transactions which impacts costs and latency.

In particular, the light client update required on average 36.5
individual Solana transactions with standard deviation of 5.8.
Still, as Fig. 4 shows, 50% of the updates took less than 25
seconds and 96% took less than a minute.

The final step corresponds to the ReceivePacket proce-
dure where the Guest Contract records the incoming packet
and delivers it to the destination on the host blockchain.

5Specifically, we have used Jito block bundles described in [35]. They offer
alternative way of prioritising transaction execution.

https://coinmarketcap.com/currencies/solana/


Be My Guest: Welcoming Interoperability into IBC-Incompatible Blockchains

Light Client Update Cost

2.5 5.0 7.5 10.0 12.5 15.0
Cost per counterparty block (USD cents)

0.00

0.25

0.50

0.75

1.00
C

D
F

Fig. 5: Cost of the light client update by the Relayer, i.e. total
cost of all the Solana transactions in the light client update.

Depending on the size of the packet this process required
4–5 Solana transactions. In all cases, all those transactions
were included together in a single Solana block resulting in
no latency introduced by the guest blockchain.

B. Relayers perspective

Relayers are responsible for: updating the light clients and
transmitting packets between the blockchains. The Relayer
operates by submitting transactions which correspond to those
operations. Relayer’s costs correlate with the number of
transactions and signature checks required to execute given
operation. During our month-long experiment we used the
default Solana fee model costing us 0.1 cents per transaction
and additional 0.1 cents per signature.

The costs for updating the light client are shown in Fig. 5.
The variance in costs is due to variance in amount of data in
a light client update and number of signatures checked when
validating the update. As discussed above, ReceivePacket
calls took 4–5 transactions; their cost was 0.4 cents in 98.2%
of the cases and 0.5 cents in the remaining cases.

C. Validators perspective

Validators are essential to ensure the safety and liveness of
the system. Their costs comprise the cost of the infrastructure
and the cost of submitting the Sign transactions. The former
is modest since their work is lightweight and does not require
substantial computing resources (they only need to submit a
single signature each time a new guest block is generated, see
Alg. 2). The latter is paid on-chain and depends on the fee
model used by the Validator.

During our one-month evaluation, each Validator used a
fixed priority fee as shown in Table I together with latency
statistics of each Validator (i.e. time between block generation
and Validator submitting a signature). We have observed corre-
lation coefficient of 0.007 between cost and latency indicating
that Validators who used higher fees were likely overpaying
and their costs could be lowered (§VI-B).

The table also illustrates the importance of incentives. Out
of 24 Validators, 7 did not submit any signatures. As a result,
when due to operator error Validator #1 stopped working, the
guest block could not be finalised because remaining well-
behaving Validators could not form a quorum. However, since
automatic slashing and rewards was not implemented, those

Time Between Blocks

10 100 1000 10000
Time between guest block generation (s)

0.00

0.25

0.50

0.75

1.00

C
D

F

Fig. 6: Interval between generation time of two consecutive
guest blocks.

TABLE I: Validator Signing Statistics

No. of Cost Block signing latency (s)
sigs (cents) Min Q1 Med. Q3 Max µ σ

#1 1535 1.00 0.8 3.6 5.6 7.6 35957.6 77.4 1373.6
#2 977 1.40 0.4 2.0 3.2 5.2 10.4 3.6 1.9
#3 790 0.25 0.4 2.0 3.2 5.6 26.8 3.9 2.5
#4 622 1.40 1.2 3.2 4.0 6.0 19.2 4.5 2.3
#5 618 0.23 0.8 2.4 3.6 5.2 14.4 4.1 2.2
#6 603 0.23 1.2 2.4 3.6 5.2 20.0 4.1 2.3
#7 464 1.40 0.8 2.8 4.0 6.0 27.6 4.7 3.0
#8 442 0.60 2.0 3.6 4.8 6.4 17.6 5.3 2.4
#9 250 0.23 1.2 2.8 3.6 4.8 261.6 8.4 24.6
#10 209 0.23 1.2 2.4 3.2 5.2 9.6 3.9 1.9
#11 143 1.40 0.8 3.2 4.8 6.4 17.6 4.8 2.4
#12 118 1.40 1.2 2.8 3.6 5.6 16.0 4.4 2.6
#13 117 1.40 0.8 2.8 4.4 6.4 27.2 4.8 3.1
#14 109 1.40 1.2 3.2 4.4 6.0 16.0 4.6 2.3
#15 21 1.40 1.6 2.0 3.2 3.2 8.0 3.3 1.8
#16 41 0.20 0.8 2.4 3.2 4.4 10.8 3.7 2.0
#17 61 0.20 1.2 2.8 3.2 4.8 9.6 3.8 1.9

Validators kept their stake intact. We expect that with a full
implementation of all the incentives, Validators will engage in
the system since otherwise they would face loss of assets.

In the absence of pending changes, a new guest block is
only generated after ∆ time (§III) which in our deployment
was set to 1 hour (§IV). Fig. 6 shows the time between two
consecutive guest blocks. The distribution roughly follow the
rate at which new packets are sent up to ∆ where an empty
block is generated. About a quarter of the guest blocks were
generated at this cut-off suggesting they were empty. During
the time we observed five blocks with time vastly over an hour
which was caused by long Validator signing delays.

D. Storage Costs

The final cost is the price of storing the state on the host
blockchain. We have allocated a 10 MiB for the guest block-
chain’s state (the largest possible account size on Solana [29])
which is sufficient to store over 72 thousand key-value pairs
and thanks to the sealable trie approach (§III-A) it should be
sufficient for our deployment in the long term.

Initialising such a large account required a deposit of 14.6
thousand dollars. While a significant amount, the assets can
be recovered when the account is shrunk or deleted. Because
of that we did not try to minimise the size right away.



M. Nazarewicz, D. Jain, M. Matos, B. Rodriguez

VI. LIMITATIONS AND FUTURE WORK

Our experimental evaluation allows us to conclude that the
guest blockhain has low costs and good performance, in line
with what was reported by previous studies on IBC-compatible
blockchains [18], [19]. However, like any system, it is not
without limitations. In this section we discuss aspects that
implementers needs to be aware of which go beyond the scope
of this paper and are the possible subject for future work.

A. Last Validator Wishing to Quit

In Proof-of-Stake blockchains, validators have to freeze
assets while they participate in the blockchain. However, to
operate blockchain must have a minimum set of validators.
This means validators may be unable to recover their assets
unless someone else is willing to take their place; if the
blockchain stops, their assets become inaccessible forever.

In systems where the native token is staked, if the block-
chain stops the native token loses its value and validators being
unable to recover their assets is not a problem. In the guest
blockchain however, Validators stake assets whose value is
independent from it—even if the guest blockchain stops, the
frozen assets retain their value. This could lead to a bank run
where Validators quit validating out of fear of becoming the
last Validator unable to withdraw their funds.

One possible mitigation is to extend the Guest Contract with
self destruction functionality—once enough time passes since
last guest block generation, the Guest Contract may releases all
assets to the remaining Validators. A non-technical alternative
is to sign contracts with organisations running the Validators
however that introduces potential trust concerns.

B. Fee optimisation

Many blockchains, including Solana, allow for prioritising
transactions through a fee which encourages block producers
to pick transactions with higher rewards [29]. Alternatively,
users can tip block producers directly to include a transaction
in a block [35]. The current implementation uses fixed fee
models which often results in good latency but is inflexible.

During low host chain usage the costs may be reduced and
during high usage the fees do not prevent long tail latency
(§V-A). Further research is necessary to dynamically adjust
the fees according to the demand on the host blockchain.

C. Security

The security of cross-chain applications remains a critical
area of research, given the millions of dollars at stake [11],
[36], [37]. IBC security relies on the safety of the involved
blockchains (but not on the Relayer). If any of the blockchains
gets compromises, the attacker can inject arbitrary packets in
the communication channel or control the guest blockchain
together with the IBC connections it facilities.

Since the guest blockchain assumes the safety of the host
blockchain (§III) it does not provide countermeasures to such
attack. To further mitigate the effects of possible attack,
implementers should rate limit the light clients. In the event
of a security breach, this gives honest actors more time to

recognise the issue and react by, for example, shutting down
the light clients and hence restrict impact of the attack.

D. Expansion to Additional Blockchains

The guest blockchain has been designed with minimal as-
sumptions in order to make it broadly applicable to many IBC-
incompatible blockchains. While the current implementation is
for Solana, we have already conducted preliminary work on
how our approach could be applicable to other blockchains.
Next, we provide a brief discussion of our findings:
• NEAR supports light clients and state proofs but does not

offer a host function to view past block hashes [22] (a
requirement when establishing IBC connections). The guest
blockchain addresses this by having the Guest Contract track
past guest blocks.

• TRON lacks state proofs [21]. The guest blockchain ad-
dresses this by offering a Merkle trie managed through a
Proof-of-Stake consensus mechanism.

• While we are unaware of blockchains lacking introspection
of block timestamps, they may theoretically exist and could
be an application for the guest blockchain. A timestamp
can be introduced by using the median of the signer’s
timestamp [38] or other decentralised methods [39].

• Lastly, the guest blockchain may be useful in systems whose
light clients have high resource demands. Since the guest
blockchain design is simple and comes with a lightweight
light client implementation, it might replace the host light
client on the counterparty blockchain.

VII. CONCLUSION

This paper introduces the guest blockchain, a novel ap-
proach that brings IBC interoperability to previously isolated
blockchain ecosystems. Our work makes three key contri-
butions. First, we present a blockchain-agnostic design that
enables IBC compatibility without modifying the host block-
chain. By leveraging existing smart contract capabilities, our
approach provides all required IBC features—including prov-
able storage, light client support, and block introspection—
while inheriting the security and liveness guarantees of the
host blockchain. Second, we demonstrate the practical viability
of our approach through a deployment on Solana’s main
network. Despite Solana’s restrictive runtime, we successfully
implemented all required IBC components. This shows that
our design can work even in challenging environments with
strict limitations. Third, our evaluation shows that the guest
blockchain achieves performance and costs comparable to
native IBC implementations. The measured latency and fees
demonstrate that adding this interoperability layer introduces
minimal overhead while maintaining all security guarantees.

Beyond these immediate contributions, our work opens new
possibilities for blockchain interoperability. The guest block-
chain approach can be adapted to most modern blockchains,
provided they offer basic smart contract functionality. This
makes it a powerful tool for expanding the IBC ecosystem,
connecting assets across previously incompatible chains.



Be My Guest: Welcoming Interoperability into IBC-Incompatible Blockchains

Acknowledgments: This work was supported by Funda-
ção para a Ciência e a Tecnologia (FCT) under plurianual grant
UIDB/50021/2020 and project ScalableCosmosConsensus.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[Online]. Available: https://bitcoin.org/bitcoin.pdf

[2] V. Buterin, “A next-generation smart contract and decentralized
application platform,” 2014. [Online]. Available: https://ethereum.org/
en/whitepaper/

[3] “The NEAR white paper,” NEAR Foundation, 2020. [Online]. Available:
https://pages.near.org/papers/the-official-near-white-paper/

[4] A. Yakovenko, “Solana: A new architecture for a high performance
blockchain,” The Solana Foundation, Tech. Rep., 2018. [Online].
Available: https://solana.com/solana-whitepaper.pdf

[5] “TRON: Advanced decentralized blockchain platform,” 2018,
whitepaper Version 2.0. [Online]. Available: https://tron.network/
static/doc/white paper v 2 0.pdf

[6] J. Kwon and E. Buchman, “Cosmos whitepaper,” 2016. [Online].
Available: https://v1.cosmos.network/resources/whitepaper

[7] J. Burdges, A. Cevallos, P. Czaban, R. Habermeier, S. Hosseini,
F. Lama, H. K. Alper, X. Luo, F. Shirazi, A. Stewart, and G. Wood,
“Overview of Polkadot and its design considerations,” Jun. 2020.
[Online]. Available: https://arxiv.org/abs/2005.13456

[8] R. Neiheiser, M. Matos, and L. Rodrigues, “Kauri: Scalable BFT
consensus with pipelined tree-based dissemination and aggregation,” in
Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems
Principles, ser. SOSP ’21. New York, NY, USA: ACM, 2021, pp. 35–
48.

[9] N. Mittal, S. Pal, A. Joshi, A. Sharma, S. Tayal, and Y. Sharma,
Comparative Analysis of Various Platforms of Blockchain. John Wiley
& Sons, Ltd, 2021, ch. 23, pp. 323–340.

[10] R. Belchior, A. Vasconcelos, S. Guerreiro, and M. Correia, “A survey
on blockchain interoperability: Past, present, and future trends,” ACM
Comput. Surv., vol. 54, no. 8, Oct. 2021.

[11] K. Ren, N.-M. Ho, D. Loghin, T.-T. Nguyen, B. C. Ooi, Q.-T. Ta, and
F. Zhu, “Interoperability in blockchain: A survey,” IEEE Transactions on
Knowledge and Data Engineering, vol. 35, no. 12, pp. 12 750–12 769,
Dec. 2023.

[12] J. Zheng, D. K. C. Lee, and D. Quian, “An in-depth guide
to cross-chain protocols under multi-chain world,” World Scientific
Annual Review of Fintech, vol. 1, Jun. 2023. [Online]. Available:
https://ssrn.com/abstract=4476061

[13] C. Goes, “The Interblockchain Communication Protocol: An overview,”
Jun. 2020. [Online]. Available: https://arxiv.org/abs/2006.15918

[14] MiX, “Introduction to NEAR-IBC,” Aug. 2023. [Online].
Available: https://medium.com/omnity/introduction-to-near-ibc-how-to-
implement-the-ibc-protocol-with-smart-contracts-a8b0e13cb886

[15] “Token bridge app,” Wormhole, 2023, whitepaper 0003.
[Online]. Available: https://github.com/wormhole-foundation/wormhole/
blob/main/whitepapers/0003 token bridge.md

[16] J. Kilpatrick, W. Moglia et al. (2023) Gravity bridge. [Online].
Available: https://github.com/Gravity-Bridge/Gravity-Docs

[17] “Axelar network: Connecting applications with blockchain ecosystems,”
2021, whitepaper Draft 1.0. [Online]. Available: https://axelar.network/
axelar whitepaper.pdf

[18] J. O. Chervinski, D. Kreutz, X. Xu, and J. Yu, “Analyzing the perfor-
mance of the Inter-Blockchain Communication protocol,” in 2023 53rd
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). Porto, Portugal: IEEE, Jun. 2023, pp. 151–164.

[19] J. Kim, M. Essaid, and H. Ju, “Inter-Blockchain Communication
message relay time measurement and analysis in Cosmos,” in 2022
23rd Asia-Pacific Network Operations and Management Symposium
(APNOMS). Takamatsu, Japan: IEEE, 2022, pp. 1–6.

[20] M. Vines, “Simple payment and state verification,” 2019. [Online].
Available: https://docs.solana.com/proposals/simple-payment-and-state-
verification

[21] “Create an alternative endpoint similar to getStorageAt that also
includes a Merkle proof,” 2023. [Online]. Available: https://github.com/
tronprotocol/java-tron/issues/5359

[22] S. Lanlege, “NEP-384: Host function for fetching block hashes in
contract runtime,” 2022. [Online]. Available: https://github.com/near/
NEPs/pull/384

[23] R. C. Merkle, “A digital signature based on a conventional encryption
function,” in Advances in Cryptology – CRYPTO ’87, C. Pomerance, Ed.
Heidelberg, Germany: Springer, 1988, pp. 369–378.

[24] H. S. de Ocáriz Borde, “An overview of trees in blockchain technology:
Merkle trees and Merkle Patricia tries,” Feb. 2022. [Online]. Available:
https://researchgate.net/publication/358740207

[25] J. Albert and S. Chaumette, “On the impossibility to forge
illegitimate proofs of membership in Merkle (Patricia) trees,”
in Web3Sec – Workshop Encouraging Building Better Blockchain
Security, Austin, United States, Dec. 2023. [Online]. Available:
https://acsac.org/2023/workshops/web3sec/WEB3SEC2023-albert.pdf

[26] C. Goes, “ICS-4: Channel and packet semantics,” Aug. 2019.
[Online]. Available: https://github.com/cosmos/ibc/tree/main/spec/core/
ics-004-channel-and-packet-semantics

[27] C. T. Nguyen, D. T. Hoang, D. N. Nguyen, D. Niyato, H. T. Nguyen,
and E. Dutkiewicz, “Proof-of-Stake consensus mechanisms for future
blockchain networks: Fundamentals, applications and opportunities,”
IEEE Access, vol. 7, pp. 85 727–85 745, 2019.

[28] G. A. Pierro and R. Tonelli, “Can Solana be the solution to the block-
chain scalability problem?” in 2022 IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER). Honolulu,
HI, USA: IEEE, 2022, pp. 1219–1226.

[29] “Solana documentation,” Solana Foundation. [Online]. Available:
https://solana.com/docs

[30] “Programs are unaware of non-default heap sizes.” [Online]. Available:
https://github.com/solana-labs/solana/issues/32607

[31] M. Nazarewicz, “Solana transaction size limit,” https://mina86.com/
2025/solana-tx-size-limits/, Feb. 2025. [Online]. Available: https:
//mina86.com/2025/solana-tx-size-limits/

[32] ——, “Solana signature count limit,” https://mina86.com/2025/solana-
signatures-count-limit/, Feb. 2025. [Online]. Available: https://mina86.
com/2025/solana-signatures-count-limit/

[33] ——, “Mutable global state in solana,” https://mina86.com/2025/solana-
mutable-global-state/, Mar. 2025. [Online]. Available: https://mina86.
com/2025/solana-mutable-global-state/

[34] ——, “Solana IBC evaluation dataset,” 2024. [Online]. Available:
https://codeberg.org/mina86/be-my-guest/src/branch/stats

[35] (2024) Low latency transaction send: What are bundles? Jito Labs.
[Online]. Available: https://docs.jito.wtf/lowlatencytxnsend/

[36] V. Buterin, “On security of cross-chain applications,” Jan. 2022.
[Online]. Available: https://www.reddit.com/r/ethereum/comments/
rwojtk/comment/hrngyk8/

[37] R. Belchior, P. Somogyvari, J. Pfannschmid, A. Vasconcelos, and
M. Correia, “Hephaestus: Modelling, analysis, and performance
evaluation of cross-chain transactions,” Nov. 2023. [Online].
Available: https://techrxiv.figshare.com/articles/preprint/Hephaestus
Modelling Analysis and Performance Evaluation of Cross-
Chain Transactions/20718058

[38] M. Baricevic, “BFT time,” Sep. 2019. [Online]. Available: https:
//github.com/tendermint/spec/blob/master/spec/consensus/bft-time.md

[39] Y. Gao and H. Nobuhara, “A decentralized trusted timestamping based
on blockchains,” IEEJ Journal of Industry Applications, vol. 6, no. 4,
pp. 252–257, 2017.

https://bitcoin.org/bitcoin.pdf
https://ethereum.org/en/whitepaper/
https://ethereum.org/en/whitepaper/
https://pages.near.org/papers/the-official-near-white-paper/
https://solana.com/solana-whitepaper.pdf
https://tron.network/static/doc/white_paper_v_2_0.pdf
https://tron.network/static/doc/white_paper_v_2_0.pdf
https://v1.cosmos.network/resources/whitepaper
https://arxiv.org/abs/2005.13456
https://ssrn.com/abstract=4476061
https://arxiv.org/abs/2006.15918
https://medium.com/omnity/introduction-to-near-ibc-how-to-implement-the-ibc-protocol-with-smart-contracts-a8b0e13cb886
https://medium.com/omnity/introduction-to-near-ibc-how-to-implement-the-ibc-protocol-with-smart-contracts-a8b0e13cb886
https://github.com/wormhole-foundation/wormhole/blob/main/whitepapers/0003_token_bridge.md
https://github.com/wormhole-foundation/wormhole/blob/main/whitepapers/0003_token_bridge.md
https://github.com/Gravity-Bridge/Gravity-Docs
https://axelar.network/axelar_whitepaper.pdf
https://axelar.network/axelar_whitepaper.pdf
https://docs.solana.com/proposals/simple-payment-and-state-verification
https://docs.solana.com/proposals/simple-payment-and-state-verification
https://github.com/tronprotocol/java-tron/issues/5359
https://github.com/tronprotocol/java-tron/issues/5359
https://github.com/near/NEPs/pull/384
https://github.com/near/NEPs/pull/384
https://researchgate.net/publication/358740207
https://acsac.org/2023/workshops/web3sec/WEB3SEC2023-albert.pdf
https://github.com/cosmos/ibc/tree/main/spec/core/ics-004-channel-and-packet-semantics
https://github.com/cosmos/ibc/tree/main/spec/core/ics-004-channel-and-packet-semantics
https://solana.com/docs
https://github.com/solana-labs/solana/issues/32607
https://mina86.com/2025/solana-tx-size-limits/
https://mina86.com/2025/solana-tx-size-limits/
https://mina86.com/2025/solana-tx-size-limits/
https://mina86.com/2025/solana-tx-size-limits/
https://mina86.com/2025/solana-signatures-count-limit/
https://mina86.com/2025/solana-signatures-count-limit/
https://mina86.com/2025/solana-signatures-count-limit/
https://mina86.com/2025/solana-signatures-count-limit/
https://mina86.com/2025/solana-mutable-global-state/
https://mina86.com/2025/solana-mutable-global-state/
https://mina86.com/2025/solana-mutable-global-state/
https://mina86.com/2025/solana-mutable-global-state/
https://codeberg.org/mina86/be-my-guest/src/branch/stats
https://docs.jito.wtf/lowlatencytxnsend/
https://www.reddit.com/r/ethereum/comments/rwojtk/comment/hrngyk8/
https://www.reddit.com/r/ethereum/comments/rwojtk/comment/hrngyk8/
https://techrxiv.figshare.com/articles/preprint/Hephaestus_Modelling_Analysis_and_Performance_Evaluation_of_Cross-Chain_Transactions/20718058
https://techrxiv.figshare.com/articles/preprint/Hephaestus_Modelling_Analysis_and_Performance_Evaluation_of_Cross-Chain_Transactions/20718058
https://techrxiv.figshare.com/articles/preprint/Hephaestus_Modelling_Analysis_and_Performance_Evaluation_of_Cross-Chain_Transactions/20718058
https://github.com/tendermint/spec/blob/master/spec/consensus/bft-time.md
https://github.com/tendermint/spec/blob/master/spec/consensus/bft-time.md

	Introduction and Related Work
	IBC Background
	The Guest Blockchain
	Guest Contract
	Validators
	Relayer and Fishermen

	Implementation and Deployment
	Evaluation
	Client Perspective
	Relayers perspective
	Validators perspective
	Storage Costs

	Limitations and Future Work
	Last Validator Wishing to Quit
	Fee optimisation
	Security
	Expansion to Additional Blockchains

	Conclusion
	References

